Financial Time Series and Volatility Prediction using NoVaS Transformations
نویسندگان
چکیده
We extend earlier work on the NoVaS transformation approach introduced by Politis (2003a,b). The proposed approach is model-free and especially relevant when making forecasts in the context of model uncertainty and structural breaks. We introduce a new implied distribution in the context of NoVaS , a number of additional methods for implementing NoVaS and we examine the relative forecasting performance of NoVaS for making volatility predictions using real and simulated time series. We pay particular attention to data generating processes with varying coefficients and structural breaks. Our results clearly indicate that the NoVaS approach outperforms GARCH-made forecasts models in all cases we examined, except (as expected) when the data generating process was itself a GARCH model.
منابع مشابه
Model-free vs. Model-based Volatility Prediction∗
The well-known ARCH/GARCH models for financial time series have been criticized of late for their poor performance in volatility prediction, i.e., prediction of squared returns.1 Focusing on three representative data series, namely a foreign exchange series (Yen vs. Dollar), a stock index series (the S&P500 index), and a stock price series (IBM), the case is made that financial returns may not ...
متن کاملForecasting copper price using gene expression programming
Forecasting the prices of metals is important in many aspects of economics. Metal prices are also vital variables in financial models for revenue evaluation, which forms the basis of an effective payment regime using resource policymakers. According to the severe changes of the metal prices in the recent years, the classic estimation methods cannot correctly estimate the volatility. In order to...
متن کاملNoVaS Transformations: Flexible Inference for Volatility Forecasting∗
In this paper we present several new findings on the NoVaS transformation approach for volatility forecasting introduced by Politis (2003a,b, 2007). In particular: (a) we present a new method for accurate volatility forecasting using NoVaS ; (b) we introduce a “timevarying” version of NoVaS and show that the NoVaS methodology is applicable in situations where (global) stationarity for returns f...
متن کاملA Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment
In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...
متن کاملA framework for Measuring the Dynamics Connections of Volatility in Oil and Financial Markets
Investigating connections between financial and oil markets is important for investors and policy makers. This knowledge allows for appropriate decision making. In this paper, we measure the dynamic connections of selected stock markets in the Middle East with oil markets, gold, dollar index and euro-dollar and pound-dollar exchange rates during the period February 2007 to August 2019 in networ...
متن کامل